lunes, 15 de abril de 2013

PITAGORAS Y SUS APORTES

Pitágoras de Samos (en griego antiguo Πυθαγόρας) (ca. 580 a. C.ca. 495 a. C.) fue un filósofo y matemático griego considerado el primer matemático puro. Contribuyó de manera significativa en el avance de la matemática helénica, la geometría y la aritmética, derivadas particularmente de las relaciones numéricas, y aplicadas por ejemplo a la teoría de pesos y medidas, a la teoría de la música o a la astronomía. Es el fundador de la Hermandad Pitagórica, una sociedad que, si bien era de naturaleza predominantemente religiosa, se interesaba también en medicina, cosmología, filosofía, ética y política, entre otras disciplinas. El pitagorismo formuló principios que influyeron tanto en Platón como en Aristóteles y, de manera más general, en el posterior desarrollo de la matemática y en la filosofía racional en Occidente.
No se conserva ningún escrito original de Pitágoras. Sus discípulos -los pitagóricos- invariablemente justificaban sus doctrinas citando la autoridad del maestro de forma indiscriminada, por lo que resulta difícil distinguir entre los hallazgos de Pitágoras y los de sus seguidores. Se le atribuye a Pitágoras la teoría de la significación funcional de los números en el mundo objetivo y en la música; otros descubrimientos, como la inconmensurabilidad del lado y la diagonal del cuadrado o el teorema de Pitágoras para los triángulos rectángulos, fueron probablemente desarrollados por la escuela pitagórica.

APORTES A LA MATEMATICAS 

La «ciencia matemática» practicada por Pitágoras y los matematikoi difiere del tratamiento de esta ciencia que se lleva a cabo en universidades o instituciones modernas. Los pitagóricos no estaban interesados en «formular o resolver problemas matemáticos», ni existían para ellos «problemas abiertos» en el sentido tradicional del término. El interés de Pitágoras era el de «los principios» de la matemática, «el concepto de número», «el concepto de triángulo» (u otras figuras geométricas) y la idea abstracta de «prueba». Como señala Brumbaugh,20 "Es difícil para nosotros hoy en día, acostumbrados como estamos a la abstracción pura de las matemáticas y el acto mental de la generalización, el apreciar la originalidad de la contribución pitagórica."
Pitágoras reconocía en los números propiedades tales como «personalidad», «masculinos y femeninos», «perfectos o imperfectos», «bellos y feos». El número diez era especialmente valorado, por ser la suma de los primeros cuatro enteros [1 + 2 + 3 + 4 = 10], los cuales se pueden disponer en forma de triángulo perfecto: la «tetraktys». Para los pitagóricos, «las cosas son números», y observaban esta relación en el cosmos, la astronomía o la música.
Entre los descubrimientos matemáticos que se atribuyen a la escuela de Pitágoras se encuentran:

 El teorema de Pitágoras. En un triángulo rectángulo: «la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa». Si bien este resultado y las ternas pitagóricas eran conceptos ya conocidos y utilizados por los matemáticos babilonios y de la India desde mucho tiempo, fueron los pitagóricos los primeros que enunciaron una demostración formal del teorema; esta demostración es la que se encuentra en Los Elementos de Euclides. También demostraron el inverso del teorema: si los lados de un triángulo satisfacen la ecuación, entonces el triángulo es rectángulo. Debe hacerse hincapié además, en que «el cuadrado de un número» no era interpretado como «un número multiplicado por sí mismo», como se concibe actualmente, sino en términos de los lados de un «cuadrado geométrico».







 

  • Sólidos perfectos. Los pitagóricos demostraron que sólo existen 5 poliedros regulares.21 Se cree que Pitágoras sabía cómo construir los tres (o cuatro) primeros,10 pero fue Hipaso de Metaponto (470 a.C.) quien descubrió el dodecaedro.nota 10 Se debe a Teeteto la demostración de que no existen otros poliedros regulares convexos.
  • Ángulos interiores de un triángulo. Encontraron que la suma de los ángulos interiores de un triángulo es igual a dos rectos, así como la generalización de este resultado a polígonos de n - lados.10
  • Construcción de figuras dada un área determinada. Por ejemplo la resolución de ecuaciones como a•(a-x)=x² por métodos geométricos.10
  • El descubrimiento de los Números poligonales. Un número es «poligonal» (triangular, cuadrangular, pentagonal, hexagonal, etc.) si tal número de puntos se pueden acomodar formando el polígono correspondiente (ver figura).
Tetraktys. Se atribuye a Pitágoras el haber ideado la «Tetraktys», la figura triangular compuesta por diez puntos ordenados en cuatro filas. Fue un símbolo de especial importancia para los pitagóricos, que solían juramentar en su nombre.




No hay comentarios:

Publicar un comentario en la entrada